
A Gravitational-Wave Data Analysis Primer
for the IndIGO Mock Data Challenge

P. Ajith,1, ∗ Satya Mohapatra,2, † and Archana Pai3, ‡

1LIGO Laboratory and Theoretical Astrophysics,
California Institute of Technology, Pasadena, CA 91125, USA

2University of Massachusetts, Amherst, MA 01003, USA
3Indian Institute of Science Education and Research, Thiruvananthapuram, India

(Id: DAPrimer.tex 88 2011-08-24 15:14:03Z ajith ; August 24, 2011)

This is an introduction to the gravitational-wave (GW) data analysis for the participants of the
IndIGO Mock Data Challenge.

I. INTRODUCTION

The General Theory of Relativity predicts the existence of gravitational waves (GWs). Generation
of GWs is analogous to the generation of electromagnetic waves: while changes in the electric field
(acceleration of charges) produce electromagnetic waves, changes in the gravitational ‘field’ (acceleration
of masses) produce GWs.

Although any (non-spherical) accelerated motion of masses can produce GWs, those produced by the
motion of terrestrial sources (or “non-relativistic” astronomical objects such as planets) are too weak
to be detectable by any conceivable technology. Indeed, gravitation is the weakest long range force of
nature, which is evident from the smallness of G! Still there exist a number of astronomical sources
that can produce GWs that are detectable using the current cutting-edge technology. These include
violent astrophysical phenomena such as the coalescence of black-hole binaries, gravitational collapse
of massive stars resulting in supernovae, rapidly rotating neutron stars etc., and various energetic
processes that might have happened in the early Universe. By decoding the emitted GW signal, it is
possible to extract the physical properties of the source, such as the component masses, spins, distance
and energetics. Thus, GW astronomy will complement the electromagnetic astronomy bringing new
information about our Universe. It is fair to say that GW astronomy will open a completely new window
to the Universe.

In astronomy, the sky is viewed in different bands of the electromagnetic spectrum ranging from radio
waves (frequency ∼ 108 Hz) to gamma-rays (1020 Hz), spanning 12 orders of magnitude in frequency).
The GW frequency spectrum covers an impressive 20 orders of magnitude — ranging from 10−16 Hz
(produced by processes in the early Universe such as inflation) to 103−104 Hz (produced by supernovae,
neutron-star oscillations etc.). Just as in the electromagnetic astronomy, the detection and analysis
methods used in GW astronomy are different in different frequency bands.

When GWs pass through the Earth, they distort the geometry of the space-time. Observing the
tiny distortions — the “strain” — in the space-time geometry is the key to the detection of GWs.
Laser interferometry provides a precise method for measuring such small deformations. In a laser
interferometer of arm-length L , a coherent laser beam is split by a beam splitter and sent in two
orthogonal directions. These beams are reflected back by two mirrors, which are in turn recombined
to produce an interference pattern. Gravitational waves induce a relative length change δL between
the two orthogonal arms of an interferometer, which produce a change in the interference pattern. The
output is recorded in terms of the strain (h = δL/L) produced by GWs.

An international collaboration of scientists with diverse expertise is involved in this GW hunt using
km-scale arm-length (L ∼ kms) interferometers as GW antennas. These detectors — LIGO [1], Virgo [2],
GEO 600 [3], TAMA 300 [4] – are among the most sensitive measurement devices ever constructed by

∗Electronic address: ajith@caltech.edu
†Electronic address: satya@physics.umass.edu
‡Electronic address: archana@iisertvm.ac.in

mailto:ajith@caltech.edu
mailto:satya@physics.umass.edu
mailto:archana@iisertvm.ac.in

2

00.10.20.30.40.50.60.70.80.91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

00.10.20.30.40.50.60.70.80.91

Frequency 10!16 Hz 10!9 !10!6 Hz 10!5 !10!1 Hz 10!1 !1 Hz 1 !104 Hz

Wavelength 1021 km 1014 !1011 km 1010 !106 km 106 !105 km 10 5 !10 km

Detection CMB Polarization Pulsar timing LISA BBO/DECIGO LIGO/Virgo/LCGT/ET

!! !"#$!" !%#$ % %#$ " "#$!
!!

!"#$

!"

!%#$

%

%#$

"

"#$

!

Coalescing binaries of stellar /
intermediate mass black
holes / neutron stars

Spinning
neutron starsN

A
SA

/C
X

O
/S

A
O

Core-collapse
supernovaeN

A
SA

/H
ST

N
A

SA
/S

w
ift

/M
 P

at
,

H
-K

ei
th

, J
 J
o
n
es

Gamma-ray
bursts

!! !"#$!" !%#$ % %#$ " "#$!
!!

!"#$

!"

!%#$

%

%#$

"

"#$

!

Coalescing supermassive
black-hole binaries

!! !"#$!" !%#$ % %#$ " "#$!
!!

!"#$

!"

!%#$

%

%#$

"

"#$

!

Neutron stars /
stellar-mass black
holes inspiralling
into supermassive
black holes

Inflation and
other processes
in the early
UniverseN

A
SA

/W
M

A
P

Inflation and
other processes
in the early
UniverseN

A
SA

/W
M

A
P

!! !"#$!" !%#$ % %#$ " "#$!
!!

!"#$

!"

!%#$

%

%#$

"

"#$

!

White-
dwarf
binaries

FIG. 1: An overview of the GW spectrum, sources and detectors in different frequency bands.

(wo)mankind. These detectors are sensitive in the frequency band of 10 Hz to a few kHz. Astronomical
sources that can produce detectable GWs in this frequency band include the coalescence of neutron-star
or stellar-mass black-hole binaries, galactic supernovae, rapidly spinning neutron stars etc. Figure 1
gives an overview of the GW spectrum.

II. GRAVITATIONAL-WAVE DATA ANALYSIS

Unlike electromagnetic astronomy, GW astronomy will not be producing images but would give out
a time-series data where a signal or many signals would be hidden in the interferometer’s noise. The
challenge would be to identify the signal (if any), separate the signal, and to locate the source. It is
more of a “finding the needle in a haystack” problem. It is this nature which makes GW astronomy
unique as it requires novel algorithms, and most of the astronomy is done on computers. In this exercise,
we will give a flavor of what a GW astronomer does! We will be focusing on a particular class of GW
sources, called inspiralling compact binaries.

A. Gravitational-wave signal from an inspiralling compact binary star

Among the most promising sources of GWs for the ground-based interferometric antennas are binaries
of compact stars such as black holes and neutron stars. Neutron stars and black holes are highly dense
objects: A neutron star with mass equal to that of the Sun will have a radius of around 15 km, while
a black hole with same mass will have a radius of 3 km. Thus, such objects can be treated as point
particles when the orbital separation is large.

Consider a system of two compact stars with masses m1 and m2 in a circular orbit. Such a system
emits GWs due to its non-spherical kinetic energy (via time varying quadrupole moment). Due to the
loss in the energy, the stars inspiral to each other and the orbital frequency of the system increases
with time following Newtonian mechanics; in particular Kepler’s laws. The inspiral continues due to
the continuous emission of GWs. The emitted gravitational waveform is a “chirp” waveform (similar
to the chirping of birds) with both amplitude and frequency increasing with time. When the compact
objects are widely separated, the problem can be treated perturbatively. In the leading order, called
“Newtonian approximation”, the GW signal (called the Newtonian chirp) can be computed as:

h(t) = A(t) cos[ϕ(t) + ϕ0] t ≥ t0 . (1)

The amplitude A(t) depends on a particular combination of the masses, called the chirp mass M,
the instantaneous frequency F (t) of GWs, the luminosity distance D to the source, and a factor G that
depends on the location of the source in the sky and its orientation with respect to the detector.

A(t) = G 4M5/3π2/3F (t)2/3

D
. (2)

3

101 102 103

Frequency [Hz]

10-24

10-23

10-22

10-21

10-20
h

(f
)

[
1/
√ H

z
]

A frequency domain plot

Sensitivity design
√
S(f) of the detector

A(f) of a Newtonian chirp

Chirp mass = 10.0 M¯

Distance = 5000.0 kpc

0.5 0.4 0.3 0.2 0.1 0.0
Time before merger [s]

6

4

2

0

2

4

6

S
tr

a
in

 a
m

p
li
tu

d
e

1e 24 A time domain wave plot

Chirp mass = 10.0 M¯

Distance = 5000.0 kpc

FIG. 2: Frequency domain and time domain plots of a Newtonian chirp. The frequency domain plot is shown
along with the strain sensitivity of a 4 km detector (

p
S(f))for comparison. For more discussion about strain

sensitivity / PSD see section A 2. Note the increasing frequency and amplitude in the time domain waveform.

For simplicity, we shall assume G = 1 which implies that the binary is conveniently oriented giving
circular polarization and the source is located along the direction where the detector shows maximum
directional sensitivity. The chirp mass can be expressed in terms of the total mass M ≡ m1 +m2 and
reduced mass µ ≡ m1m2/M as M = µ3/5M2/5.

The GW signal phase ϕ(t) can be expressed as

ϕ(t) = ϕ0 + 2π
∫ t−t0

0

F (t′) dt′. (3)

The constant ϕ0 is the GW phase when the signal enters the detector at the time instant t = t0 and
frequency F = F0. The gravitational wave frequency depends on source parameters by

F (t) = F0

(
1− t− t0

Tc

)−3/8

, Tc ≡ 5
256 (πF0)8/3M5/3

(4)

where Tc is the chirp duration. It can be seen that the frequency F (t) monotonically sweeps from lower
to higher frequencies. As expected, more massive stars inspiral much faster than less massive stars
which is indicative in the above equation. Given F0 (which depends on the lower frequency cut-off of
the interferometer; see, e.g. the left plot of Figure 2), the Newtonian chirp is characterized by four
parameters; namely M, t0, ϕ0 and D.

All expressions in this Section are written in geometrized units, in which G = c = 1. Mass and
distance have units of seconds. Physical units can be obtained by replacing a massM by GM/c3, and
a distance D by cD. In geometrical units, 1M� = 4.92549095× 10−6 s and 1pc = 1.0292712503× 108

s. To give an order of magnitude of the quantities involved, we set m1 = m2 = 1.4M�; M = 1.22M�
located at the distance of 100 kpc. It would emit GWs of amplitude A ∼ 10−22 at frequency 10 Hz.

A(t) = 3.6× 10−22

(
D

100kpc

)−1(M
1.22M�

)5/3(
F (t)
10Hz

)−2/3

. (5)

Later, we will see that it is useful to express the time-domain signal given in Eqs. (1)–(4) in fre-
quency domain. The Fourier transform of h(t) can be computed by employing the stationary phase
approximation [5]. At leading order, the Fourier transform h̃(f) ≡ A(f) eiΨ(f) is given by:

A(f) =
M5/6

Dπ2/3

√
5
24
f−7/6 , Ψ(f) = 2πft0 − ϕ0 − π/4 +

3
128

(πMf)−5/3. (6)

The Fourier frequency f may not be confused with the instantaneous frequency F (t) of GWs. We
can plot the time-domain waveform h(t) and the frequency-domain amplitude A(f) using Eqs. (1)
– (6). The plots are shown in Figure 2. A python code to make these plots can be found here:
http://gw-indigo.org/mdc-2011/tools/plot_chirp.py.

http://gw-indigo.org/mdc-2011/tools/plot_chirp.py

4

B. Signal detection in the noisy data

A general class of signal detection problems involve detecting signals in the random noise of the
instrument. The problem becomes hard when the signal is buried deep inside the noise and does not
stand out in the time-series [7]. This problem is encountered in identifying a submarine in sonar data,
aircraft in radar signal, fingerprint matching etc. The special stream which addresses these problems is
called as Statistical Signal Analysis.

The data x(t) can be modeled as an addition of a signal h(t) to be detected and random noise n(t);
i.e., x(t) = h(t) + n(t). Given the data stream x(t), there exists two possibilities; signal is present
or absent in the data. Since x(t) is random, one can attach probabilities to these outcomes, namely,
P1(x = n+ h) and P0(x = n) respectively. Naively, one could think that if the measured values of the
data are more probable when signal is present than when it is absent i.e. P1(x) > P0(x), we should
claim that we have detected signal. However, there is a small trouble. Since noise is random, at times
it mimics the signal. Such events are called false alarms (falsely identifying an event as a signal event).
We need to account for the false alarm rates. The probability of false alarms (FAP) is defined as

FAP =
∫ ∞
x0

P0(x) dx . (7)

The FAP is the sum of all probabilities for the data to cross the threshold value x0 in absence of signal.
Calculation of the FAP, and the threshold x0 requires modelling the noise distribution. Now revisiting
the previous argument, we can claim a detection when x > x0, or alternatively, Λ > Λ0, where

Λ ≡ P1(x)
P0(x)

, and, Λ0 ≡ P1(x0)
P0(x0)

. (8)

The ratio Λ is called the likelihood ratio. It can be shown that, testing the condition Λ > Λ0 amounts
to maximizing the signal detection probability (SDP)

SDP =
∫ ∞
x0

P1(x) dx , (9)

for a given value of FAP [6]. The signal detection probability is the sum of all the probabilities for the
data to cross the threshold x0 in presence of signal, i.e. for Λ > Λ0.

1. Noise properties

As we discussed in Section II B, estimating the FAP requires modelling the noise distribution. The
instrument noise n(t) of duration T is modeled as a stationary, Gaussian random process of mean zero
and variance σ2. This implies that noise at various time instances are identically distributed Gaussian
random variables with mean zero and variance σ2. For all such stationary processes, the moments of
the distribution remain constant with time. In reality, stationarity assumption may be too simplistic,
but it is sufficient for this exercise.

• White Noise: As the name suggests, white noise is analogous to white light. Just like white light
has equal contributions from all its constituent colors, white noise has equal power contribution
from all the frequencies. If we denote the Fourier transform of n(t) as ñ(f), white noise has the
property

E[ñ(f)ñ∗(f ′)] =
T

2
S0 δ(f − f ′) , (10)

where E[.] is the expectation/mean of a quantity and ? denotes complex conjugation. Note that
the power contribution (S0) is same for all the frequencies.

• Colored Noise: On the contrary, colored noise carries unequal noise power from its constituent fre-
quencies. Depending upon the functional dependence, the noise power is low at certain frequencies
and high at certain frequencies i.e.

E[ñ(f)ñ∗(f ′)] =
T

2
S(f)δ(f − f ′), (11)

5

where S(f) is called the one sided power spectral density (PSD), with dimensions of Hz−1. The
interferometer noise is the sum total of noise due to its subsystems such as suspension system,
laser, electronics, vacuum system etc. and hence it is expected to be colored. For example, seismic
isolation has high noise at low frequencies (< 20 Hz) whereas quantum noise from laser has high
noise at high frequencies (f > 1000 Hz). As a result the S(f) looks like a broad 1-D valley when
plotted against frequency; see Figure 5. The bandwidth of the initial interferometers is 20− 1000
Hz with the most sensitive frequencies in the range (f ∼ 70− 500 Hz).

2. Matched filtering and signal-to-noise ratio

In case a known signal h(t) buried in stationary Gaussian noise, the optimal technique for signal
extraction is the matched filtering, which involves cross-correlating the data with a template of the
signal. It can be seen that under the aforementioned assumptions of the noise, the the likelihood ratio
is equivalent to using a matched filter.

The correlation function between two time series x(t) and ĥ(t) for a time shift τ is defined as:

R(τ) =
∫ ∞
−∞

x(t) h̃?(t− τ) dt , (12)

where ? denotes complex conjugation. The Correlation Theorem (see Table I) provides an efficient way
of computing the correlation function: R(τ) is the inverse Fourier transform of x̃(f)h̃?(f).

R(τ) =
∫ ∞
−∞

x̃(f)h̃?(f) ei2πfτdf. (13)

This is the optimal filter for detecting a known signal buried in Gaussian white noise. On the other
hand, if the noise is colored, then the corresponding matched filter output is

R(τ) = 2
∫ ∞
−∞

x̃(f)h̃?(f)
S(f)

ei2πfτdf, (14)

where S(f) is the one-sided PSD of the detector noise (see Eq. 11 for definition). Since, in our case the
signal h(t) and noise n(t) are real valued functions, the following relations hold: ñ(−f) = ñ(f)?, and
h̃(−f) = h̃(f)?. This means that positive frequencies contain all the relevant information, and we can
restrict the integration into positive frequencies. Hence Eq.(14) can be written as

R(τ) = 4
∫ ∞

0

x̃(f)h̃?(f)
S(f)

ei2πfτdf. (15)

The optimality is evident as it gives more weight for frequencies where the detector is more sensitive
and hence enhancing the signal-to-noise ratio (SNR). The optimal SNR is obtained when the template
exactly matches with the signal.

SNR2 ≡ ||h||2 ≡ 4
∫ ∞

0

|h̃(f)|2
S(f)

df. (16)

In the ideal scenario where the noise is stationary Gaussian, if the SNR is greater than a predetermined
threshold, which corresponds to an acceptably small FAP, a detection can be claimed.

C. Detection of an unknown Newtonian chirp in colored Gaussian noise

We saw in the previous section that signal detection can be declared if the SNR is greater than a
predetermined threshold. But computing the matched filter requires the exact knowledge of the signal.
Although we can compute the expected gravitational waveform as a function of the source parameters,
the parameters of the signal that is buried in the data is not known a priori. Thus, we need to maximize
the SNR over all the parameters describing the signal: M, D, t0, ϕ0.

• Maximization over D: We note from Eqs.(2) and (6) that D appears only in the amplitude, as
a linear scaling factor. The SNR can be maximized over D by just using normalized templates
ĥ(f) ≡ h̃(f)/||h|| in the filtering (see Eqs. 15 and 16).

6

TABLE I: Correspondence between continuous and discrete time as well as Fourier domain

Continuous Domain Discrete domain

Time series: x(t); 0 < t < T xj ≡ x(tj), tj = j∆, j = 1, . . . , N

Frequency series: x̃(f); 0 < f <∞ xk ≡ x(fk), fk = k/(N∆), k = 0, . . . , N/2

Fourier Transform (FT): Discrete Fourier Transform (DFT):

x̃(f) =
R∞
−∞ x(t)e−2πiftdt x̃k =

PN
j=1 xje

−2πijk/N

Inverse Fourier Transform (IFT): Discrete Inverse Fourier Transform (DIFT):

x(t) =
R∞
−∞ x̃(f)e2πiftdf xj = 1

N

PN
k=1 x̃je

2πijk/N

Parseval Theorem:R∞
−∞ y(t) z(t) dt =

R∞
−∞ ỹ(f) z̃?(f) df N

PN
j=1 yj zj =

PN
k=1 ỹk z̃∗k

Correlation Theorem:R∞
−∞ y(t) z?(t− t′) dt = IFT{ỹ(f) z̃∗(f)}

PN
j=1 y(j) z?(j − j′) = DIFT{ỹk z̃∗k}

Power Spectral Density S(f) 2 T
N2 Sk, Sk = E[|ñk|2]

• Maximization over ϕ0: It can be seen from Eq.(1) that, when ϕ0 → 0, the optimal template is
cosϕ(t) and when ϕ0 → π/2, the optimal template is sinϕ(t). Making use of the orthogonality of
sine and cosine functions, the obvious way to maximize the SNR over ϕ0 is to compute the corre-
lation of the data with a sine template and a cosine template, and add the SNRs in quadrature.
i.e., SNR2 = SNR2

0 + SNR2
π/2, where SNR0 [SNRπ/2] is the SNR obtained using the cosine [sine]

template. These templates can be generated in the frequency domain by setting ϕ = 0 [π/2] in
Eq.(6).

• Maximization over t0 is effected by just taking the maximum value of the correlation function
R(τ).

• Maximization over M: There is no simple analytical trick to maximize the SNR over the chirp
mass M! So, one has to create a “bank” of templates with different values of M and find out
which value of M gives the maximum SNR.

D. Discrete Fourier Transform

Till now, we treated signal as a continuous function of time or frequency. However, data recorded
at the output of an interferometer is sampled with a fixed sampling rate and is finite in length of time
T . Hence it is necessary to work in the discrete domain rather than continuous domain. Let fs = 1/∆
be the sampling frequency and N = fs T be the number of samples. In Table I, we summarize the
correspondence between discrete and continuous domain.

III. THE MOCK DATA CHALLENGE

In this challenge, participants are required to identify inspiralling binary black hole GW signals buried
in the detector noise. The data set consisting of a few tens of simulated GW signals from inspiralling
binary black holes in simulated noise of a future GW observatory called IndIGO is available at the
following link: http://www.gw-indigo.org/mdc_data_set. This hypothetical detector is assumed to
have sensitivity comparable to that of the Initial LIGO [1] detectors. Each frame file from the link

http://www.gw-indigo.org/mdc_data_set

7

above contains a channel called I1:INDIGO-STRAIN storing 3600 seconds of “strain” data. The frame
file also contains related information, such as the sampling rate of the data and the GPS time-stamps.
The data is stationary Gaussian distributed, with a one-sided PSD of:

S(f) =

{
9× 10−46

[
(4.49x)−56 + 0.16x−4.52 + 0.52 + 0.32x2

]
, if f ≥ 40 Hz

∞, if f < 40 Hz.
(17)

where x ≡ f/fm, fm = 150 Hz. In actual searches, the PSD is estimated from the data (see Appendix A
for a simple exercise). Still, in order to make the analysis simpler, we suggest to use this analytical fit
to the PSD in computing the matched filter.

The main task in this challenge is to:

• Identify the GPS times of signal using a matched filtering search or an “excess-power” search on
the data set. A data analysis group will get 10 points for each correctly identified signal within
0.5 s of actual GPS time of the signal. If the identified signal is within 1 s of the actual injected
time, then the group will get 5 points. Participants are encouraged to find as many signals as
they can. If they report a time which does not have any signal within 1 s then there is no point
for that.

• They should also report the signal-to-noise ratio (SNR) and the estimated chirp mass of the signal.
A correct chirp mass within 20 % accuracy will carry 10 points each.

• We suggest an SNR threshold of 5.5 to be used for the identification of a signal.

Participating groups are required to submit a report via email to mdc2011@gw-indigo.org at the end
of their analysis. In the report the groups are supposed to briefly describe the methods they used to
identify the signals along with a result table. A sample result table is show below. The first line contains
the actual parameters of a signal that is present in the data set. Participants may use these values to
verify their search algorithms.

GPS_time estimated_SNR estimated_chirp_mass (in solar_mass)

977875997.91 15 19

9******** ** **

9******** ** **

9******** ** **

9******** ** **

9******** ** **

[1] URL http://www.ligo.caltech.edu/.
[2] URL http://www.virgo.infn.it/.
[3] URL http://www.geo600.org/.
[4] URL http://tamago.mtk.nao.ac.jp/.
[5] K. Thorne, in Three Hundred Years of Gravitation, edited by S. Hawking and W. Israel (Cambridge University

Press, Cambridge, U.K.; New York, U.S.A., 1987), pp. 330–458.
[6] The Neyman-Pearson Lemma, URL http://en.wikipedia.org/wiki/NeymanPearson_lemma.
[7] Students are encouraged to play the Black-hole hunter game at http://www.blackholehunter.org/

mailto:mdc2011@gw-indigo.org
http://www.ligo.caltech.edu/
http://www.virgo.infn.it/
http://www.geo600.org/
http://tamago.mtk.nao.ac.jp/
http://en.wikipedia.org/wiki/Neyman–Pearson_lemma
http://www.blackholehunter.org/

8

segment 1 segment 2 segment 3 segment 4

ñk ñk ñk ñk

ti

ni

!average

〈ñk〉

FIG. 3: A schematic diagram showing the splitting of data into smaller segments, computing FFTs of each
segments, and averaging to compute the PSD.

Appendix A: Introduction to statistical analysis and signal processing

This section provides some warm-up exercises in statistics and signal processing, along with a list of
MATLAB/Octave/Python functions which are useful for each exercise.

1. Random numbers, probability distributions

• Generate a set of random numbers ni drawn from Gaussian distribution. Estimate the mean and
variance. Make a histogram of {ni} and plot the expected probability distribution (Gaussian)
computed from the mean and variance. What is the probability P (ni > λ) for one of them to be
greater than a threshold λ ?

Useful functions (MATLAB/Octave): randn, mean, var, normpdf, normcdf, hist

(Python): numpy.random.randn, numpy.mean, numpy.var, numpy.random.normal,

scipy.stats.norm.pdf,scipy.stats.norm.cdf, numpy.histogram

• What is the probability distribution of the set of numbers pi = n2
i ? Plot the histogram of {pi}

along with the expected probability distribution computed from the mean and variance. Determine
the probability P (pi > λ) for one of them to be greater than a threshold λ.

Useful functions (MATLAB/Octave): chi2pdf, chi2cdf

(Python): scipy.stats.chi2.pdf,scipy.stats.chi2.cdf

2. Fast Fourier transform, power spectral density estimation

• Assume that {ni} is a time-series data vector sampled at a sampling rate ∆. Compute the Fast
Fourier Transform (FFT) of ni. Plot the magnitude of the FFT. Repeat the analysis using a
window function (say, Hanning window). What is the effect of the window function? Why is the
FFT ‘noisy’?

The frequency range of the Fourier transform ñk is limited by the sampling rate due to the
Nyquist theorem. The maximal useful frequency fN ≡ fs/2 is called Nyquist frequency, where
fs ≡ 1/∆ is the sampling frequency. The frequency resolution of the FFT is given by ∆f = fs/N ,
where N is the number of samples in {ni}. The way the frequency bins of ñk are ordered
depends on the particular FFT implementation. In Octave, the frequency bins are ordered as
[0,∆f, 2∆f, ..., fN ,−fN + ∆f,−fN + 2∆f, ...,−∆f].

Useful functions (MATLAB/Octave): fft, hanning

(Python): numpy.fft, numpy.hanning

9

• Compute the power spectral density (PSD) of the data by appropriately normalizing the FFT
and averaging over many noise realizations. What is the effect of changing the number of samples
used to compute one FFT? What is the effect of the number of segments averaged over in order
to compute the PSD?

Since the time-domain data that we use is real, the following relation holds in the Fourier domain:
ñ(−f) = ñ(f)∗. This means that just the positive frequencies contain all the information needed to
reconstruct the data. The normalization used to compute the PSD depends on the normalization
used in the particular FFT implementation. In Octave, the one-sided (positive frequencies only)
PSD can be computed as

Sk =
2
〈|ñk|2〉∆
N

, (A1)

where N is the number of samples used to compute one FFT, and angular brackets denote
ensemble averages. In the case of a windowed FFT, N should be replaced by

∑
w2
i where wi is

the window function used.

3. Correlation function, matched filter

• Construct a data stream ni of Gaussian white noise (using randn function) with zero mean and
unit variance. Multiply the data with 10−23, thus creating a noise vector with variance 10−46

(comparable to the noise variance of current interferometers — but note that actual detector
noise is not white).

• Create a time vector with sampling frequency fs = ∆−1 = 2048 Hz.

• Add a Newtonian chirp signal (see Section II A) to the noise: xi = ni+hi. ChooseM = 8M�, D =
50 Mpc, F0 = 40 Hz.

• Compute the correlation function between the data and the normalized template (see Eq.12). The
inverse FFT can be computed using the ifft function.

• Find the peak of the correlation function and use that as your detection statistic. This is the
optimal filter for Newtonian chirp signals in white noise.

• Change the distance D to the binary. Increasing D will result in a decrease in the SNR, and
vice-versa. The ability to detect the signal depends on the SNR.

10

Appendix B: Software

We recommended using high-level programming languages such as Matlab/GNU-Octave or Python.
For all practical purposes, “high-level” just means they are easy to learn and use! Additionally, Octave
and Python are free software, and come preinstalled with many Unix-like operating systems. Indeed,
the participants are free to use any language of their preference. But reading the binary files containing
the GW data (frame files) is particularly easy with these languages. We will also assume that the
participants are using a Unix-like operating system (GNU/Linux, Solaris, Mac OS X, BSD etc.). Some
useful resources for Matlab/Octave/Python are given below:

1. Matlab

• Matlab page: http://www.mathworks.com/products/matlab/

• Matlab documentation: http://www.mathworks.com/help/techdoc/

• Introduction to Matlab:

1. http://www.mathworks.com/moler/intro.pdf
2. http://www.mccormick.northwestern.edu/docs/efirst/matlab.pdf
3. http://www.physics.byu.edu/Courses/Computational/phys330/matlab.pdf

2. Octave

• Octave home page: http://www.gnu.org/software/octave

• Octave documentation: http://www.gnu.org/software/octave/doc/interpreter

• Introduction to Octave:

1. http://linuxgazette.net/109/odonovan.html
2. http://www.math.utah.edu/docs/info/octave_3.html
3. http://www.maritime-engineers.com/Documentation/octave-intro.pdf

3. Python

If you are using a Unix like operating system there is high chance that your OS has already Python
installed. In the shell terminal type python. For this primer we will assume you are using a version
of Python ≥ 2.4. If your OS does not have Python, you can install the appropriate version from the
Python homepage.

• Python home page: http://www.python.org/

• Python by itself comes pretty light-weight. To be able to do a wide variety of numerical manip-
ulation on arrays we will need numpy. Similarly scipy package comes with necessary scientific
subroutines to do data analysis. To be able to graphs with Python we need matplotlib. Sub-
packages for Python:

1. numpy: http://numpy.scipy.org/
2. scipy: http://www.scipy.org/
3. matplotlib: http://matplotlib.sourceforge.net/

You might also need several other sub-packages of Python. There is a company, Enthought scientific
computing solutions, which bundles the latest Python distribution with all the different sub-packages.
For academic use (using an academic email) it will let you download this bundled Python distribution
free of cost.

• Enthought Python download page: http://www.enthought.com/products/edudownload.php

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/help/techdoc/
http://www.mathworks.com/moler/intro.pdf
http://www.mccormick.northwestern.edu/docs/efirst/matlab.pdf
http://www.physics.byu.edu/Courses/Computational/phys330/matlab.pdf
http://www.gnu.org/software/octave
http://www.gnu.org/software/octave/doc/interpreter
http://linuxgazette.net/109/odonovan.html
http://www.math.utah.edu/docs/info/octave_3.html
http://www.maritime-engineers.com/Documentation/octave-intro.pdf
http://www.python.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://www.enthought.com/products/edudownload.php

11

There are several learning resources for Python in the web. We list a few here for your reference.

• General Python tutorial: http://docs.python.org/tutorial/

• numpy tutorial: http://www.scipy.org/Tentative_NumPy_Tutorial

• scipy tutorial: http://docs.scipy.org/doc/scipy/reference/tutorial/index.html

• numpy for MATLAB users: http://www.scipy.org/NumPy_for_Matlab_Users

• scipy cookbook: http://www.scipy.org/Cookbook

4. Frame library

The data collected by GW observatories worldwide is stored in a particular binary format, called
frame format. A frame is a unit of information from the interferometer data over a finite time interval.
The frame library is a collection of tools to read and manipulate frame files. To install the Frame
library, first download the latest version from: http://lappweb.in2p3.fr/virgo/FrameL/.

The example below shows how to download, compile and install the frame library. Executing the
following commands in a Unix-type system should work:

wget http://lappweb.in2p3.fr/virgo/FrameL/libframe-8.15.tar.gz

tar xzvf libframe-8.15.tar.gz

pushd libframe-8.15

./configure --prefix=SUITABLE_FOLDER_WHERE_YOU_WANT_TO_INSTALL

make

make install

popd

To be able to link frame library with other programs it is useful to have pkg-config program. Most
probably your OS should have pkg-config pre-installed. If not you can download and install it from:
http://www.freedesktop.org/wiki/Software/pkg-config. The following example demonstrates the
usefulness of pkg-config.

$ export PKG_CONFIG_PATH=FOLDER_WHERE_YOU_INSTALLED_FRAMELIB/lib/pkgconfig:$PKG_CONFIG_PATH

$ pkg-config --libs --cflags-only-I libframe

And as an output of the above command you will get something similar to what is show below.

-I/opt/local/include -L/opt/local/lib -lFrame

This header and library locations will help to link other programs with the frame library. There are
wrapper codes to use the frame library to read/write frame files in Matlab/Octave/Python.

5. Frame library interface to Matlab/Octave/Python

This section describes how to read data into Matlab/Octave/Python. Mostly we will assume that the
platform is Linux. But these instructions should work in any Unix-type system with minor changes.

a. Matlab

The Frame library also provides a “mex” file which can be used to read the data stored in the frame
files to Matlab. First we need to compile the source code to create the mex file. Start Matlab, and go
to the following directory: ∼/libframe-8.15/matlab You should be able to see the file frgetvect.c
here. Now compile the mex file in Matlab command window:

>> mex frgetvect.c FOLDER_WHERE_YOU_INSTALLED_FRAMELIB/lib/libFrame.so -I../src

This will create a mex file frgetvect.mexa64 (the extension depends on the system architecture). Copy
frgetvect.mexa64 and frgetvect.m to your working directory or add ∼/libframe-8.15/matlab to
your Matlab path. Make sure that Matlab can access the mex file by typing:

http://docs.python.org/tutorial/
http://www.scipy.org/Tentative_NumPy_Tutorial
http://docs.scipy.org/doc/scipy/reference/tutorial/index.html
http://www.scipy.org/NumPy_for_Matlab_Users
http://www.scipy.org/Cookbook
http://lappweb.in2p3.fr/virgo/FrameL/
http://www.freedesktop.org/wiki/Software/pkg-config

12

0 2 4 6 8 10 12 14 16
−1.5

−1

−0.5

0

0.5

1

1.5
x 10−16

Seconds starting from GPS time 977875220

d(
t)

FIG. 4: An example of the time series data retrieved from frame files.

>> which frgetvect

in the Matlab command window. Matlab should return the location of the newly compiled mex file.
Type help frgetvect to see how to use this function. Here is an example:

>> [d, t] = frgetvect(’I-INDIGO-977875220-3600.gwf’, ’I1:INDIGO-STRAIN’, 977875220, 16, 0);

Warning: frgetvect:info:Opening I-INDIGO-977875220-3600.gwf for channel I1:INDIGO-STRAIN

(t0=977875220.00, duration=16.00)

>> figure; plot(t, d); xlabel(’Seconds starting from 977875220’); ylabel(’d(t)’);

This will plot 16 seconds of time-series data starting from GPS seconds 977875220, as shown in Figure 4.

b. Octave

Go to the directory ∼/libframe-8.15/octave, and open the Makefile using a text editor. In the
Makefile change the following variables to point to the location of your newly installed frame library

FRAME_INC = FOLDER_WHERE_YOU_INSTALLED_FRAMELIB/include

FRAME_LIB = FOLDER_WHERE_YOU_INSTALLED_FRAMELIB/lib

Now type make in the shell. This will create, among other files, a binary file called loadframe.oct.
Copy loadframe.oct and loadframe.o to your working directory or add ∼/libframe-8.15/octave
to your Octave path. Do help loadframe in the Octave command line to see how to use this function.
Here is an example:

octave:1> [d, fs] = loadframe("I-INDIGO-977875220-3600.gwf", "I1:INDIGO-STRAIN", 1, 977875220);

octave:2> length(d)/fs

ans = 3600

Note that, unlike the case of the Matlab mex file, here we cannot specify the length of data to be
read in a single call: loadframe loads the entire data in the frame file (3600 seconds) into the vector d,
and hence is rather slow. Also, fs = 1/∆t is the sampling frequency of the data.

c. Python

Pylal is a package which offers several python based routines to do GW data analysis. Here we will
use a strip-down version of pylal only to be used to read the frame data. Assuming you have numpy,
pkg-config and wget you can just download the following script and run it. This shell script will install
both the frame library and the pylal python wrapper for you in any Unix like OS: http://gw-indigo.
org/mdc-2011/tools/install_python_tools.sh. By default this installs in the following directory:
∼/indigo python/install. To use the python frame reading wrapper do:

source ~/indigo_python/install/pylal/etc/pylal-user-env.sh

Then you can start Python. In Python prompt do:

>>> from pylal import Fr

http://gw-indigo.org/mdc-2011/tools/install_python_tools.sh
http://gw-indigo.org/mdc-2011/tools/install_python_tools.sh

13

You can load a gwf file into a python array using frgetvect function, e.g.

frame = Fr.frgetvect("I-INDIGO-977875220-3600.gwf","I1:INDIGO-STRAIN")

Now let’s look at this array:

>>> frame

(array([3.85241898e-17, 3.70307674e-17, 3.55302314e-17, ...,

-3.90825860e-17, -3.74059633e-17, -3.56520304e-17]), 977875220.0, (’’,), ’’)

The first index holds time series strain data (Note: unlike MATLAB/Octave, Python starts counting
array index from 0):

>>> frame[0]

array([3.85241898e-17, 3.70307674e-17, 3.55302314e-17, ...,

-3.90825860e-17, -3.74059633e-17, -3.56520304e-17])

The second index shows the GPS start time of the frame.

>>> frame[1]

977875220.0

The fourth index shows the inverse of sampling rate, i.e. spacing between the time-series strain data.

>>> frame[3]

(0.000244140625,)

>>> frame[3][0]

0.000244140625

>>> 1/frame[3][0]

4096.0

This particular frame file has 3600 s of data, which we can verify by,

>>> len(frame[0])*frame[3][0]

3600.0

Rather than loading the full data we can load part of the data, e.g. in the example shown below only
10 s the data is being loaded from a start time of 977875255.

>>> frame = Fr.frgetvect("I-INDIGO-977875220-3600.gwf","I1:INDIGO-STRAIN",977875255,10)

>>> print frame[1]

977875255.0

>>> print len(frame[0])*frame[3][0]

10.0

In the example below we show how to do some plots in Python. We will first load 100 s of data then
plot the time-series. After that we will use the PSD function in Python’s matplotlib library to draw
the spectra. The plots are show in fig: 5. More details on PSD is given in section A 2.

##########################

Python code to do produce time-series and PSD from the frame file

This code can also be downloaded from

http://gw-indigo.org/mdc-2011/tools/plot_frame.py

import necessary python modules

import numpy

from pylal import Fr

matplotlib is the plotting library for python

from matplotlib.mlab import psd

import matplotlib

Use the "Agg" option only if you are running this code outside python prompt

i.e. in a shell $ python THIS_CODE.py

if you running this code inside python prompt, comment out the "Agg" option

matplotlib.use("Agg")

pylab gives python some MATLAB like feel

import pylab

load 10 s of data starting from GPS time = 977875220

frame = Fr.frgetvect("I-INDIGO-977875220-3600.gwf","I1:INDIGO-STRAIN",977875220,100)

14

0 20 40 60 80 100
Seconds starting from GPS time = 977875220.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

A
m

p
lit

u
d
e

1e 16

101 102 103

Frequency [Hz]

10-24

10-23

10-22

10-21

10-20

√ S
(f

)
[1
/√ H

z
]

FIG. 5: An example of the time series data and PSD plot with Python.

t = numpy.linspace(0,100,len(frame[0]))

estimate PSD from the data

spectra, freqs = psd(frame[0],NFFT=int(4/frame[3][0]),Fs=1/frame[3][0],noverlap=0,sides="twosided")

#plot time series

pylab.plot(t,frame[0],"r-")

pylab.xlabel("Seconds starting from GPS time = " + str(frame[1]))

pylab.ylabel("Amplitude")

pylab.savefig("timeseries.pdf")

pylab.close()

#plot spectra

pylab.loglog(freqs,numpy.sqrt(spectra),"g.")

pylab.ylim(1e-24,1e-20)

pylab.xlim(1e1,5e3)

pylab.xlabel("Frequency [Hz]")

pylab.ylabel("$\sqrt{S(f)}$" + "$ [1/\sqrt{Hz}] $")

pylab.savefig("spectra.pdf")

pylab.close()

	Introduction
	Gravitational-wave data analysis
	Gravitational-wave signal from an inspiralling compact binary star
	Signal detection in the noisy data
	Noise properties
	Matched filtering and signal-to-noise ratio

	Detection of an unknown Newtonian chirp in colored Gaussian noise
	Discrete Fourier Transform

	The mock data challenge
	References
	Introduction to statistical analysis and signal processing
	Random numbers, probability distributions
	Fast Fourier transform, power spectral density estimation
	Correlation function, matched filter

	Software
	Matlab
	Octave
	Python
	Frame library
	Frame library interface to Matlab/Octave/Python
	Matlab
	Octave
	Python

